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Abstract. The level of nonlinearity in the elastic response of materials containing structural
damage is far greater than in materials with no structural damage. This is the basis for nonlin-
ear wave diagnostics of damage, methods which are remarkably sensitive to the detection and
progression of damage in materials. Nonlinear wave modulation spectroscopy (NWMS) is one
exemplary method in this class of dynamic nondestructive evaluation techniques. The method
focuses on the application of harmonics and sum and difference frequency to discern damage
in materials. It consists of exciting a sample with continuous waves of two separate frequencies
simultaneously, and inspecting the harmonics of the two waves, and their sum and difference
frequencies (sidebands). Undamaged materials are essentially linear in their response to the two
waves, while the same material, when damaged, becomes highly nonlinear, manifested by har-
monics and sideband generation. We illustrate the method by experiments on uncracked and
cracked Plexiglas and sandstone samples, and by applying it to intact and damaged engine com-
ponents.

1. Introduction

Experimental evidence for the highly nonlinear behavior of microcracked and damaged
materials has existed for years from experiments of static stress–strain behavior and
dynamic nonlinear wave interaction, but the methodology has yet to be developed and
applied for materials testing procedures, except in rare instances.

Nonlinear elastic wave spectroscopy (NEWS) methods are powerful new tools in
interrogation of damage in materials. Due to material nonlinearity, a wave can distort,
creating accompanying harmonics, multiplication of waves of different frequencies,
and, under resonance conditions, changes in resonance frequencies as a function of
drive amplitude. In undamaged materials, these phenomena are very weak. In damaged
materials, they are remarkably large. The sensitivity of nonlinear methods to the detection
of damage features (cracks, flaws, etc.) is far greater than that of linear acoustical methods
(measures of wave speed and wave dissipation), and in fact, these methods appear to be
more sensitive thananymethod currently available [1–12].
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There are two general NEWS approaches to damage detection by nonlinear wave
means. One NEWS method, nonlinear resonant ultrasound spectroscopy (NRUS), de-
pends on the study of the nonlinear response of a single, or a group of, resonant modes
within the material. Resonance frequency shifts, harmonics, and damping characteristics
are analyzed as function of the resonance peak acceleration amplitude. The method is
extremely useful for basic research and specific applications that do not have strict time
requirements in terms of speed of application [14–16]. The simple-mode nonlinear reso-
nant ultrasonic spectroscopy technique (SIMONRUS, a single-mode version of NRUS)
and an application of this technique is addressed in Part II [17].

The method presented here is nonlinear wave modulation spectroscopy (NWMS). This
method can be quickly applied, and in our view, is ideally suited to applications where
the question of damaged versus undamaged must be addressed quickly. Fundamentally,
NWMS is based on monitoring nonlinear wave mixing in the material. The manifestations
of the nonlinear response appear as wave distortion and accompanying wave harmonics,
and in sum and difference frequency generation (sidebands). The approach has proved
to be time efficient and effective in discerning damage to materials in our experience
[11–13].

Initially, microcracked materials undergoing structural damage show progressively
enhanced features of nonlinear elastic response [11–13, 16, 17]. In undamaged ma-
terials such as intact aluminum, steel, or Plexiglas, the manifestations of nonlinear
response are extremely small and difficult to measure. These materials respond with
atomic nonlinearity, or deformation at the atomic/molecular scale. Their nonlinear be-
havior is well understood and well described by classical nonlinear acoustical pertur-
bation theory [18, 19]. In the same materials when damaged, the nonlinear response
and the manifestations of nonlinearity are very large and easy to measure [11–13,
16, 17, 20–23]. The large nonlinear response arises from the complex compliance of
local or volumetric cracks that are mesoscale (10−9 m) and larger, entirely dominat-
ing the relatively small atomic nonlinearity. However, the nonlinear response is far
more complicated than the cracks themselves, being also related to fluids in cracks
and absorbed fluids on crack walls. The full mechanism of the nonlinear response is
not yet well understood. Fortunately, however, application of NWMS does not require
an understanding of the mechanism of nonlinearity. From various static and dynamic
experiments we do know that microcracked materials cannot normally be described
by classical theory. When damaged, intact materials become what we callnonlinear
mesocopic elasticmaterials and have at least one of the following properties: they are
highly nonlinear, and/or they exhibit hysteresis and discrete memory in their stress–
strain relation [23]. The theoretical description of nonlinear mesoscopic elastic ma-
terials contains terms that describe classical nonlinearity, as well as hysteresis, and
discrete memory [24–29]. Comparison between experimental data and theoretical sim-
ulations provides essential information as to what type of nonlinearity is dominant in
the material. Qualitatively we can say that the more damaged a material is, the larger
is its nonlinear response. The quantitative relationship has yet to be demonstrated,
however.

In this paper we describe the NWMS method and provide examples from three dif-
ferent materials. Two of the materials, Plexiglas and an engine component, are intact
materials that, when cracked, become nonlinear mesoscopic materials. The third material
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is a sandstone. Sandstone is composed of atomic material bonded together by contacts
that can be soft. This rock generally has numerous microcracks. Because of its archi-
tecture, it is nonlinear mesoscopic to begin with. When a crack is added, it becomes
even more nonlinear, as will be illustrated. All these results indicate that the nonlinear
response of the material when damaged is extremely large when compared to the intact
material.

First, in order to interpret the experimental data in a meaningful way, we briefly review
the current state of the art in dynamic modeling of nonlinear elasticity and acoustic wave
interaction.

2. Theoretical Background

Various static and dynamic experiments imply that the dynamic elastic behavior of most
solid materials cannot be described by a linear theory. Nonlinear elastic behavior may
manifest itself in the generation of harmonics upon dynamic wave propagation, in non-
linear attenuation, resonance frequency shift, and slow time effects. As a first approach
(most widely used for the description of nonlinearity in fluids), one generally introduces
nonlinearity in the theoretical model by expressing the elastic moduli in a power se-
ries of the strain (relative deformation). This is equivalent to accounting for a strain
dependency of the energy density at an order higher than the second order (second or-
der corresponds to linear elasticity) [18, 19]. For highly nonlinear materials, even terms
of quartic order in strain for the energy density (second order for the moduli) can be
considered [30]. However, in most cases, the power series approach is not satisfactory.
Highly nonlinear materials exhibit more complicated phenomena in their stress–strain
relation. Hysteresis and discrete memory are commonly observed in static tests, and
persist even in low-strain dynamic experiments [23–29]. Micro-inhomogeneities such
as cracks, voids, and contacts have a complex compliance and the local nonlinear forces
may entirely dominate the relatively small atomic nonlinearity. Therefore, the theoret-
ical description of nonlinear mesoscopic elastic materials contains terms that describe
classical nonlinearity, as well as hysteresis, and discrete memory [10, 24–29, 31]. To
first approximation, the one-dimensional constitutive relation between the stressσ and
the strainε used in simulations of the dynamic behavior of solids can be expressed as
follows:

σ =
∫

K (ε, ε̇)dε, (1a)

with K the nonlinear and hysteretic modulus given by

K (ε, ε̇) = K0
{
1− βε − δε2− α[1ε + ε(t) sign(ε̇)] + · · ·} , (1b)

whereK0 is the linear modulus,1ε is the local strain amplitude over the previous period
[1ε = (εMax− εMin)/2 for a simple continuous sine excitation],ε̇ = dε/dt is the strain
rate, sign(ε̇) = 1 if ε̇ > 0 and sign(ε̇) = −1 if ε̇ < 0 [24, 25, 28, 32]. The parameters
β andδ are the classical nonlinear perturbation coefficients, andα is a measure of the
material hysteresis.
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Fig. 1. Schematic overview of the nonlinear contributions to the constitutive equation and its
implication for dynamic one-dimensional wave propagation of a finite-amplitude monofrequency
signal.

The implication of the nonlinear hysteretic modulus on the acoustic wave propagation
is summarized in Fig. 1, where we compare linear wave propagation of a monofrequency
signal with the results for the various nonlinear and hysteretic contributions [28]. The
figure illustrates the effects on the modulus–strain and stress–strain relation, the defor-
mation of the signal, the harmonic spectrum, and the amplitude dependence of the second
and third harmonics. One clearly observes distinct behavior between classical nonlinear
and hysteretic nonlinear behavior. It is important to note that the third harmonic for a
purely hysteretic material is quadratic in the fundamental strain amplitude, whereas a
cubic dependence is predicted by classical nonlinear theory. Analogously, a modulation
experiment involving frequenciesf1 and f2 with amplitudesA1 andA2 would result in
second-order sideband generation( f2±2 f1)with amplitudes proportional toα · A1 · A2

in the case of materials with dynamic hysteresis, whereas classical theory would predict
a higher-order dependence:Cβδ(A1)

2 · A2, with Cβδ a constant combination ofβ andδ.
The first-order intermodulation frequencies atf2 ± f1 arise from the classical twofold
nonlinear interaction betweenf1 and f2, and their amplitude is proportional toβ ·A1 ·A2.
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Fig. 2. Sample geometry and experimental
configuration for the Plexiglas and sandstone
samples.

With this background, we can now move on to the nonlinear wave modulation exper-
iments.

3. Experiment and Configuration

The experimental configuration in applying NWMS is shown in Fig. 2. The Plexiglas and
sandstone samples were cut in the manner shown in the figure in order to quantitatively
control the cracking of the sample. Cracks were induced by confining the sample center
and applying tension to the region of the hole (which had a diameter of 13 mm for both
samples). Doing so, we obtained a crack length of 50 mm in the Plexiglas sample with
dimensions 110×110×6 mm, and a crack of 20 mm in the sandstone sample which mea-
sured 98× 87× 18 mm in dimension. Identical experiments were conducted before and
after cracking. In the experiments, two continuous waves with separate frequencies are
input into the sample simultaneously using piezoelectric transducers. The first transducer
generates a low-frequency signal (typically 5–20 kHz), the second one a high-frequency
wave (typically 70–120 kHz). The waves are detected by a calibrated accelerometer at a
separate location on the sample. The waveform is preamplified and collected by a 16-bit
digitizer, and Fourier analyzed. To illustrate the nonlinear response, one frequency is
held at a constant amplitude and the other is stepped up in amplitude from nearly zero
to 10 V input. In a sample that is intact (atomic), the output spectrum contains the two
frequencies that have been affected by linear processes of wave dissipation and scatter-
ing, and by very small atomic nonlinearities. In a sample that is damaged (or nonlinear
mesoscopic to begin with), harmonics and sidebands are created by the nonlinearity of
the medium in addition to the linear effects. The presence of the harmonics and side-
bands indicates microcracking and damage. As explained in the theoretical section, the
relationship between the drive amplitudes and the harmonics/sidebands provides clues
to the type of nonlinearity of the material.
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Fig. 3. Interpolated contourplot of the wave modulation spectra (f1 = 7 kHz, f2 = 70 kHz) for
an intact and cracked Plexiglas plate in the case of a fixedf2 drive voltage. The spectral frequency
is on the horizontal axis, thef1 drive voltage(V1) is on the vertical axis (applied voltage increases
downward), and the gray scale corresponds to the measured frequency amplitude (darker tints mean
higher amplitudes; the light-gray background corresponds to the noise level). The existence of
harmonics and sidebands becomes apparent in the cracked sample.

4. Results

4.1. Plexiglas

In the experiment with Plexiglas, the two drive frequencies applied weref1 = 7 and
f2 = 70 kHz, respectively. Drive amplitudes forf1 were 0, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2,
6, and 10 V, respectively, andV2 was held fixed at a constant voltage. The experiment
was performed on an intact sample and on a sample with a 5-cm-long crack. The linear
properties of the waveforms, dissipation and wave speed, remained the same in both mea-
surements. Figure 3 illustrates the increasing wave modulation in the measured spectra
as a function of the drive amplitude levels for the undamaged and damaged samples,
respectively. This figure is an interpolated contourplot with frequency on the horizontal
axis, drive voltageV1 on the vertical axis, and with a gray scale which corresponds
to the measured frequency content (darker tints correspond to higher amplitudes; the
light-gray background represents the noise floor). There is some amount of harmonic
and sideband energy in the intact sample. This is due primarily to nonlinearities in the
associated electronics, and a small portion is due to the inherent atomic nonlinearity of
the material. In contrast, the damaged sample shows considerably larger harmonics and
sidebands.

In order to quantify the relationships between the drive frequencies and the harmonic/

modulation signals, we analyzed their dependency on the measured low-frequency am-
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Fig. 4. Analysis of the wave modulation spectra for intact and cracked Plexiglas as a function
of the measured fundamentalf1 amplitude:top, analysis for the uncracked Plexiglas;bottom,
analysis for the cracked sample;left, harmonics 2f1 and 3f1; right, first and second modulation
frequenciesM+ (at f2 + f1), M− (at f2 − f1), M2+ (at f2 + 2 f1), M2− (at f2 − 2 f1).

plitude, and plotted them in Fig. 4. It is clear from the intact Plexiglas results shown in
the top portion of Fig. 4 that our system noise is of order−40 dB. Above this level we
can rely on the observations. The bottom portion of Fig. 4 illustrates the results from the
cracked sample. Here we see that the second harmonic 2f1 increased in amplitude by at
least 20 dB compared to the uncracked sample, and that it has a power-law relation of 2
with the fundamental. This means that the second harmonic has originated by a classi-
cal nonlinear twofold frequency interaction betweenf1 and itself. The first modulation
terms (the actual sum and difference frequencies, indicated byM+ and M−, respec-
tively) have a slope of 1, which is in agreement with the theoretical prediction. They
originate as a result of a first-order interaction between the low- and the high-frequency
signal. Compared to the uncracked Plexiglas sample, the level of the first modulation
frequencies increased by 20 dB, similar to the increase of the second harmonic. This can
only be interpreted as an increase of the classical nonlinearity parameterβ with a factor
100. The levels of the third harmonic and of the second modulation terms (M2+ and
M2− at frequenciesf2+ 2 f1 and f2− 2 f1, respectively) are too small to be analyzed.

4.2. Sandstone

We performed a similar experiment on a sandstone sample where the two modulation
frequencies applied weref1 = 7.9 and f2 = 82.4 kHz, respectively. This time, we
investigated the harmonic and sideband growth as a function of the amplitude of the
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Fig. 5. Similar representation of the wave modulation spectra (limited to the 65–100 kHz band)
for uncracked and cracked sandstone as in Fig. 3. In this caseV1 is fixed, and the data are collected
for increasingf2 drive voltage(V2) (vertical axis, applied voltage increases downward). Again, the
existence of sidebands becomes apparent in the cracked sample.

high-frequency signal. The drive amplitudes forf2 ranged from 0 to 10 V, andV1 was
held fixed at constant voltage. As before, the experiment was performed on an intact
sample and on a sample with a 2-cm-long crack. Wave speed and dissipation remained
the same in both measurements.

Sandstone is a completely different material than Plexiglas. It is composed of grains
bonded together by soft contacts and it generally has numerous microcracks, which
makes it nonlinear mesoscopic to begin with. The amplitude-dependent spectra for the
uncracked and cracked sandstone sample are illustrated in Fig. 5. Again, the experimental
data are shown in an interpolated contourplot with frequency on the horizontal axis, drive
voltageV2 on the vertical axis, and with a gray scale which corresponds to the measured
frequency content (darker tints correspond to higher amplitudes). This figure clearly
illustrates that an inherently mesoscopic material becomes even more nonlinear when a
crack is added.

To quantify the amount of damage, we analyze the dependence of the modulation
harmonics on the measured high-frequency amplitude. These are plotted in Fig. 6. The
uncracked sample shows a slight appearance of the first modulation frequencies above the
noise level of−60 dB. There is no evidence of measurable second-order modulation. The
results for the cracked sample, however, show large levels of first and second harmonics
(in both sum and difference components). Again, the increase is at least of order 20 dB.
Further, we observe that all modulation harmonics have a power-law relation of 1 with
the fundamentalf2 amplitude.

In a complementary experiment we fixed the drive amplitude of the high-frequency
signal (6 V) and varied the low-frequency component. The analyzed results for the
cracked sample are shown in Fig. 7. From the harmonic data, we observe a quadratic de-
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Fig. 6. Analysis of the wave modulation spectra for intact and cracked sandstone as a function
of the measured fundamentalf2 amplitude (appliedV1 remains constant):left, analysis of the first
and second modulation frequencies for the uncracked sandstone;right, analysis for the cracked
sample.

pendence for both the second and the third harmonic on the fundamentalf1 amplitude. In
addition, the modulated components appear to be linear in the low-frequency amplitude.
The observations from both experiments combined indicate that the second as well as
the third harmonic originate from a twofoldf1 interaction and that both the first and the
second modulation sidebands arise from a twofold frequency interaction betweenf1 and
f2. However, if classical perturbation theory for nonlinear wave propagation applied, a
slope of 3 would be predicted for the third harmonic off1, together with a slope of 2 for
the second-order modulation terms (M2+ andM2−) as a function of thef1. As stated in
Section 2, this discrepancy between the classical theory and these experimental results
can only be explained by the existence of hysteresis and discrete memory [24–29]. This
should be no surprise, however, because we know that all sandstones are mesoscopic
nonlinear to begin with.

The conclusion from these observations on sandstone is that, due to the induced dam-
age, both the first-order classical nonlinearity parameterβ and the hysteretic parameter
α have increased considerably (both the first and the second sideband originate from
twofold frequency mixing!), and that the contribution of the third-order nonlinearity
represented by theδ term in Eq. (1b) is negligible compared to the contribution of the
hysteretic term.

Fig. 7. Analysis of the wave modulation spectra for the cracked sandstone sample as a function
of the measured fundamentalf1 amplitude (appliedV2 remains constant at 6 V):left, analysis
of the harmonics;right, analysis of the first and second modulation frequencies.
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Fig. 8. Interpolated contourplot of the wave modulation spectra for an undamaged and a cracked
rocker arm in the case of fixedf2 drive voltage. Similar representation as in Figs. 3 and 5. Thef1

drive voltage(V1) is increasing downward on the vertical axis.

4.3. Automobile Engine Component

Nonlinear wave modulation experiments have been carried out in materials with complex
geometries as well. The tests using complex geometries included those on automobile
engine connecting rods, components that are composed of a bar with open circular shapes
at each end, much like an elongated number 8. We performed NWMS in two ways: (1) by
studying the interaction of two monofrequency continuous wave at various drive voltages
of the low-frequency signal (CW-mode NWMS), and (2) by a time-window analysis of
the interaction between a high-frequency continuous signal and the entire resonance
mode spectrum of the sample, which was excited by tapping the sample with an impact
hammer (impact-mode NWMS). Application of both NWMS techniques was successful
at discerning an undamaged sample and a sample with a small crack.

In CW mode, the two modulation frequencies applied weref1 = 6.7 and f2 =
127.3 kHz. The drive amplitudes forf1 were increased in seven intervals to an input
level of 10 V.V2 was held fixed. Figure 8 (again in the form of an interpolated contourplot)
shows the amplitude-dependent spectra for the undamaged and cracked connecting rods.
The figures clearly illustrate the abundance of harmonics and sidebands in the cracked
sample compared to the intact one. This dramatic increase is also visible from Fig. 9,
where we plot the level of first- and second-order sum frequencies as a function of the
fundamentalf1 amplitude for both the intact and the cracked sample. In the latter, we
observe a slope of 1 for the dependence of the first sum frequency componentM+, and
a slope between 1 and 2 for the second-order sum frequencyM2+. Similar results were
obtained for the first- and second-order difference frequencies. This lead to the interpre-
tation that the second-order modulation harmonic originates from a mixed contribution
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Fig. 9. Analysis of the wave modulation spec-
tra for an intact and a cracked engine part in CW
mode. Only the first and second sum frequencies
are shown. The difference frequencies show similar
behavior.

of classical and hysteretic nonlinear phenomena. The cracked sample definately displays
the signs of mesoscopic nonlinearity.

In the impact mode, we tapped the samples with an impact hammer while a high-
frequency signal was simultaneously applied to the sample. Due to the impact, all reso-
nance modes are excited. The spectrum is limited in the frequency band to about 20 kHz
because of the attenuation of the material. In addition, the low-frequency content gen-
erated by the impact lasts for only a limited time, and is attenuated with a characteristic
decay time, which is of the order of 100µs. In order to analyze the nonlinear (or
amplitude-dependent) behavior of the samples, we applied a moving time-window anal-
ysis to the measured signal by dividing the acquired time record into 6 intervals. Each
time window was 10µs long and contained 4000 data points. A spectral analysis was
performed for each of these intervals. The most interesting parts of the modulation spec-
tra are shown in Fig. 10. Even though energy is abundantly present in the low-frequency
band, there is no interaction with the high-frequency component for the intact sample.
On the other hand, the damaged sample shows large levels of energy in the sidebands,
even in the last time window, when the impact energy has nearly disappeared.

The analysis of the wave modulation spectra in the impact-mode NWMS can be per-
formed as follows: (1) define the frequency bands of interest at low frequency (containing
all the resonance modes) and similarly around the high-frequency input signal (including
all sideband modulations); (2) integrate the power spectrum in the two spectral bands,
yielding the “equivalent energy” valuesI1 and I2 for the low and the high frequency,
respectively; (3) subtract the “energy” of thef2 component fromI2; and (4) plot the
resulting value againstI1. The outcome of this procedure applied to each time window
is shown in Fig. 11, showing the “sideband energy” versus the “impact energy.” For
the intact unit, we observe a very modest linear increase of the sideband energy with
increasing impact energy. In the case of the damaged unit, the dependence has a slope
between 1 and 2. The initial growth index (proportionality coefficient of the power law)
of this relationship may be used as a damage indicator in quality control, e.g., integrated
in a production line.
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Fig. 10. Low- and high-frequency amplitude spectra in NWMS impact mode (6 levels according
to 6 time windows of the acquired wave modulated signal) for an intact and a cracked engine
part.

5. Conclusions

The results presented here indicate that the nonlinear response of a material when dam-
aged is extremely large when compared to an intact material. Therefore, acoustic diag-

Fig. 11. Integration analysis of the wave modulation
spectra for an intact and a cracked engine part in impact
mode. Each data point represents the amount of “sideband
energy” (integrated high-frequency power spectrum be-
tween 120 and 134 kHz, exclusivef2) in relation to the
“impact energy” (integrated low-frequency power spec-
trum up to 20 kHz) as analyzed from the power spectrum
of each of the time windows of the acquired wave modu-
lated signal.
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nostic methods that look primarily for nonlinear phenomena such as wave distortion by
creation of harmonics and multiplication of waves of different frequencies have a strong
potential in damage detection. In undamaged materials, the nonlinear phenomena are
very weak. In damaged materials, they are remarkably large. Because of the complex
(i.e., nonlinear and hysteretic) compliance of cracks and flaws, the sensitivity of non-
linear methods to the detection of damage features is far greater than that of any linear
acoustical methods.

The method outlined in this paper focused on the nonlinear interaction of low- and
high-frequency signals. The method is fast and efficient, and proved to be very effective in
discerning an undamaged sample and a sample with a small crack. It can be applied to any
type of geometry, and may therefore possess a huge potential in large-scale applications
involving nonlinear studies; monitoring reactor containment walls for damage, inspecting
aircraft and spacecraft, observing fatigue damage in buildings, bridges, tunnels, gas and
oil pipelines, quality control in assembly lines, etc.
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